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ABSTRACT: Accurate quantitative precipitation estimates (QPEs) at high spatial and temporal resolution are difficult to
obtain in regions of complex terrain due to the large spatial heterogeneity of orographically enhanced precipitation, spar-
sity of gauges, precipitation phase variations, and terrain effects that impact the quality of remotely sensed estimates. The
large uncertainty of QPE in these regions also makes the evaluation of high-resolution quantitative precipitation forecasts
(QPFs) challenging, as it can be difficult to choose a reference QPE that is reliable at both high and low elevations. In this
paper we demonstrate a methodology to combine information from multiple high-resolution hourly QPE products to eval-
uate QPFs from NOAA’s High-Resolution Rapid Refresh (HRRR) model in a region of Northern California. The meth-
odology uses the quantiles of monthly QPE distributions to determine a range of hourly precipitation that correspond to
“good,” “possible,” “underestimated,” or “overestimated” QPFs. In this manuscript, we illustrate the use of the methodol-
ogy to evaluate QPFs for seven atmospheric river events that occurred during the 2016–17 wet season in Northern Califor-
nia. Because the presence of frozen precipitation is often not captured by traditional QPE products, we evaluate QPFs
both for all precipitation, and with likely frozen precipitation excluded. The methodology is shown to provide useful infor-
mation to evaluate model performance while taking into account the uncertainty of available QPE at various temporal and
spatial scales. The potential of the technique to evaluate changes between model versions is also shown.
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1. Introduction

In recent years quantitative precipitation forecasts (QPFs)
have been produced with more frequent update cycles and
increased spatial and temporal resolution. In the United
States, the hourly updating operational High-Resolution
Rapid Refresh (HRRR; Benjamin et al. 2016) model produ-
ces hourly precipitation forecasts at 3-km grid spacing out to
18 h, and out to 36 h at 0000, 0600, 1200, and 1800 UTC begin-
ning with version 3 in 2018. The HRRR model is updated
somewhat regularly, and the latest version (HRRR version 4)
became operational in December 2020. To evaluate the
quality of high resolution QPFs, quantitative precipitation
estimates (QPEs) with commensurately high spatial and
temporal resolution are needed. While it is possible to
aggregate high resolution QPFs for comparison to lower
resolution QPEs, the full value of high resolution forecasts
is realized at their native resolution.

Ground-based radar observations can provide frequent
updates to precipitation estimates at high spatial resolution,
and in the eastern United States, QPE products comprised of
observations from ground-based radars or ground-based
radars combined with other sensors are frequently used for
both QPF evaluation and the validation of independent QPE
products (e.g., Bytheway and Kummerow 2015; Cai and
Dumais 2015; Clark et al. 2014; Davis et al. 2006; Ebert and
Gallus 2009; Gourley et al. 2010). Although there are many

uncertainties in radar-based QPE due to the indirect relation-
ship between the measured radar reflectivity and rain rate,
ground clutter, and beam-filling effects (Villarini and Krajew-
ski 2009); the advent of dual-polarization radar has greatly
improved the detection and removal of nonprecipitating arti-
facts resulting in improved rainfall estimates (Ryzhkov et al.
2005). The eastern United States also has a relatively high
availability of rain gauges to both supplement and comple-
ment the radar-based QPE.

Satellite-based precipitation products are also being pro-
duced at high spatiotemporal resolution on a global scale,
providing subhourly to hourly QPE on the order of 5–10-km
grid spacing. Like radar, these satellite-based products are
prone to uncertainties due to the indirect relationship
between surface precipitation and satellite-observed radian-
ces, spatial resolution of the satellite footprint, and algorithm
assumptions (Bellerby and Sun 2005; Kirstetter et al. 2015;
Tian and Peters-Lidard 2010).

In the complex terrain of the western United States, obtain-
ing high-resolution QPE is much more complicated: low-level
radar observations are often blocked by mountains, gauges
are more sparse due to difficulty of placement and lack of
infrastructure, and satellite-based QPE products are known
to have reduced quality over complex terrain, snow-covered
surfaces, and when detecting frozen precipitation (Bartsotas
et al. 2018; Derin et al. 2016; Hirpa et al. 2010; Dinku et al.
2008; Timmermans et al. 2019; Beck et al. 2019; Ebert et al.
2007; Tian and Peters-Lidard 2010; Sun et al. 2018; Dinku
et al. 2010). Even in relatively well-instrumented areas, oro-
graphic influences on precipitation can result in large
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accumulation differences over relatively small areas that often
cannot be resolved by available observation networks. The pres-
ence of frozen precipitation further complicates evaluation, as
many QPE products underestimate frozen precipitation or do
not measure it at all (Lundquist et al. 2019; English et al. 2021b).

The combination of highly heterogeneous precipitation
fields and large QPE uncertainty make the evaluation of high-
resolution QPFs in regions of complex terrain quite challeng-
ing. In fact, some studies have suggested that model simula-
tions may be of higher quality than the observations in these
regions (Lundquist et al. 2019). Additionally, large QPE
uncertainty can make it difficult to choose a reliable reference
product for model validation [i.e., What product (if any) rep-
resents the true rainfall in this region?]. Ciach et al. (2007)
point out the need for methods that account for errors in
QPE datasets that are used to evaluate other QPE products
or QPFs. They, as well as Villarini et al. (2009a,b) developed
and demonstrated a method that accounts for the uncertainty
in radar-derived rainfall estimates when they are used to eval-
uate QPE or QPF. These methods rely on a dense network of
high-quality rain gauges, and would therefore likely be less
successful in regions of complex terrain.

One area where complex topography presents challenges to
both high resolution precipitation estimation and forecasting
is in northern California, United States. Northern California,
and the San Francisco Bay Area in particular, is densely pop-
ulated and prone to both flood and drought (Swain et al.
2018). Therefore, accurate high resolution QPFs are necessary
for both water supply and flood mitigation management in
the region. A collaboration between water management

agencies in the San Francisco Bay Area and the National
Oceanic and Atmospheric Administration (NOAA) called
the Bay Area Advanced Quantitative Precipitation Infor-
mation (AQPI) project aims to improve observations and
forecasts of precipitation in this region (Cifelli et al. 2018).
The AQPI study domain contains several topographic fea-
tures that challenge both observation and prediction of pre-
cipitation, including, from west to east, the transition from
sea to land, the Coastal Range rising sharply inland from
the coast to elevations of 2000 m, the large Central Valley,
and finally the Sierra Nevada mountain range, which
reaches elevations of over 4000 m (Fig. 1a). The AQPI
domain has served as a test bed for a number of HRRR
model experiments that aim to improve QPFs in the region.
These include testing a 1-km nest (i.e., higher spatial resolu-
tion), testing the impact of an increased number of vertical
levels, and data assimilation experiments (English et al.
2021a). With such large QPE uncertainties in this domain
(Bytheway et al. 2020), finding a consistently reliable refer-
ence with which to evaluate these experimental forecasts at
their native resolution has been difficult.

Elsewhere in the United States, particularly east of 105°W,
the hourly, 4-km National Centers for Environmental Predic-
tion (NCEP) Stage IV Multisensor QPE (Lin and Mitchell
2005; Nelson et al. 2016) or 1-km Multi-Radar Multi-Sensor
(MRMS; Zhang et al. 2011, 2014, 2016) QPE products are
often used for QPF validation. Due to the lack of a sufficient
gauge network and frequently blocked radar observations
(Maddox et al. 2002), the California/Nevada River Forecast
Center (CNRFC) did not produce an hourly Stage IV in the
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FIG. 1. (a) The AQPI domain, with locations cited in the text labeled. HADS gauges are shown by gray stars, while HMT-West gauges
are shown by black dots. The location of WSR-88D radars is given by orange X marks with the station name and 100-km range rings of
radars both within and just outside the domain shown with gray circles. Gauge sites used in the text are shown by white diamonds. (b)
Example radar quality index from MRMS from 1500 UTC 17 Nov 2017, including radar locations with 100-km range rings and gauge sites
cited in the text. Higher values indicate better quality radar estimates.
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AQPI domain during water year 2017, which is the focus of
this study. While hourly MRMS is available in this region dur-
ing the period of study, it too suffers from uncertainties in
northern California due to poor observational data coverage
(Bytheway et al. 2019).

In this paper, we propose a QPF evaluation methodology that
takes into account the large QPE uncertainty in regions of com-
plex terrain, using the AQPI domain (Fig. 1) as a testbed. The
methodology incorporates numerous available high resolution
QPE products, acknowledging that all have strengths and weak-
nesses in regions of complex terrain. The developed methodol-
ogy relies on the assumption that the “true” QPE is likely
within the range of the various estimates, applying qualitative
descriptors of forecast performance that depict how the QPF fits
within the uncertainty of the QPE rather than calculating tradi-
tional evaluation metrics that compare QPF to an absolute refer-
ence. The authors acknowledge that this is a big assumption,
particularly in high terrain where frozen precipitation dominates.
For this reason, in section 4 we perform our forecast evaluation
both with and without likely frozen precipitation included. In
sections 2 and 3, we describe the available QPE and QPF prod-
ucts and the QPF validation methodology. In section 4 we dem-
onstrate how the methodology is used to evaluate both a single
version of the HRRR model and compare changes between two
versions of the model. Several case studies are assessed to illus-
trate common performance characteristics that can be used to
inform future model development. Discussion and conclusions
are presented in sections 5 and 6, respectively.

2. Data

a. Quantitative precipitation estimates

Bytheway et al. (2020) examined the large degree of uncer-
tainty in high-resolution (hourly, ,10-km grid spacing) QPE
in northern California, identifying ten available products for
evaluation that are used in this study as well. This includes
four satellite products: the NOAA Climate Prediction Center
(CPC) morphing technique (CMORPH; Joyce et al. 2004; Xie
et al. 2017) version 1.0, Integrated Multisatellite Retrievals for
Global Precipitation Measurement (GPM) (IMERG) version
6 research/final run (Huffman et al. 2018; Tan et al. 2019), Pre-
cipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks–Cloud Classification System
(PERSIANN-CCS; Hsu et al. 1997; Hong et al. 2004), and
Global Satellite Mapping of Precipitation (GSMaP; Kubota et al.
2007; Ushio et al. 2009). Also included are two precipitation
gauge datasets—the Hydrometeorological Automated Data Sys-
tem (HADS; Kim et al. 2009) and gauges operated in the region
as part of the Hydrometeorology Testbed–West (HMT, https://
hmt.noaa.gov/), and two gauge-informed products—the MRMS
Mountain Mapper (MRMS-MM) and MRMS Gauge-Adjusted
Radar (MRMS-GA) (Zhang et al. 2011, 2014, 2016). Finally, two
multisensor products produced by NCEP are also included—the
Real Time Mesoscale Analysis and the Unrestricted Mesoscale
Analysis [RTMA (De Pondeca et al. 2011) and URMA, respec-
tively]. Brief descriptions of the available high-resolution QPE
follow.

1) SATELLITE-BASED PRODUCTS

(i) CMORPH version 1.0
CMORPH combines instantaneous precipitation estimates

retrieved from passive microwave remote sensing on low
Earth orbiting (LEO) satellites with motion vectors derived
from geostationary infrared (GEO-IR) satellite imagery. As
each LEO retrieval is performed, it is interpolated both for-
wards and backward in time with the derived motion vectors
(i.e., the “morphing” process; Joyce et al. 2004), determining
the shape and location of precipitating features during periods
of time between LEO estimates. Version 1.0 includes a bias
correction using daily gauge analysis from the CPC (Xie et al.
2017) and is available globally at 30-min time steps and 8-km
grid spacing. Hourly precipitation estimates are obtained by
assuming constant rain rates for the duration of each time step
and accumulating two half-hourly estimates to a single hour.
CMORPH Version 1.0 can be obtained from https://www.cpc.
ncep.noaa.gov/products/janowiak/cmorph_description.html.

(ii) PERSIANN-CCS
The PERSIANN-CCS algorithm uses a cloud classifica-

tion system to categorize cloud features observed by GEO-
IR satellites based on height, areal extent, and texture.
These categories are then used to assign a rain rate to each
pixel within the cloud feature. The rain rates are assigned
via an empirical relationship between brightness tempera-
ture and rain rate that is both regionally dependent and
temporally evolving. Both the cloud classification procedure
and precipitation distribution for each cloud type were
developed and trained for an artificial neural network using
observations from the Tropical Rainfall Measurement Mis-
sion (TRMM) satellite and ground-based radar (Hsu et al.
1997; Hong et al. 2004). PERSIANN-CCS estimates are
available hourly at 0.04° (approximately 4 km) grid spacing
from https://chrsdata.eng.uci.edu/.

(iii) IMERG V06 final run
IMERG is similar to CMORPH, in that precipitation esti-

mates from passive microwave satellites are interpolated
between individual LEO satellite overpasses. The IMERG
algorithm includes an intercalibration between all of the
observed passive microwave radiances prior to performing
precipitation retrievals to account for differences in scan strat-
egy, available channels, and overpass times. The microwave-
based precipitation estimates are then interpolated between
overpasses using the CMORPH technique as well as PER-
SIANN. Finally, monthly gauge data from a variety of sources
is applied to reduce biases (Huffman et al. 2018). IMERG
precipitation estimates are available every 30 min at 0.1°
(approximately 10 km) grid spacing and can be obtained from
https://pmm.nasa.gov/data-access/downloads/gpm.

(iv) GSMAP
GSMAP is produced by the Japanese Aerospace Agency

(JAXA) and, similar to CMORPH, combines multiple passive
microwave-based precipitation estimates with motion vectors
from GEO-IR to produce hourly precipitation estimates at
0.1° (∼10 km) grid spacing. In addition to motion vectors, a
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Kalman filter technique is also employed that uses cloud-top
height measurements from the GEO-IR to estimate changes
in precipitation intensity, location, and shape between the
LEO overpasses. GSMaP data can be found via https://
sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm.

2) GAUGE PRODUCTS

(i) HADS
The HADS gauge dataset includes approximately 7000

gauges operated by multiple state and federal agencies (Kim
et al. 2009). The data are monitored as they are ingested for
obvious issues such as instrument malfunction or transmission
errors and verified to be valid at the top of the hour. If missing
values can be proven to have occurred when no rain was pre-
sent, they are replaced with zeros. Gauges included in the
HADS dataset may be used for bias correction or the creation
of other QPE products included in this study (i.e., the QPE
are not entirely independent). HADS data are archived at the
National Centers for Environmental Information (NCEI),
and the location of 231 HADS gauges available within the
AQPI domain are shown by gray stars in Fig. 1a.

(ii) HMT-West
NOAA’s Physical Sciences Laboratory (PSL) operates a

number of precipitation gauges in the western United States
as part of the NOAA Hydrometeorology Testbed (HMT;
https://hmt.noaa.gov/). Though far fewer in number than the
HADS gauges, many of the 49 HMT network gauges in the
AQPI domain were sited specifically to monitor precipitation
interactions with the complex terrain, including 25 gauges
in the Russian River basin and 8 in the American River
basin above Folsom Lake. The HMT gauges are not
included in the HADS network, and therefore represent a
completely independent source of QPE, having no influ-
ence on any other QPE product. The gauges are maintained
by PSL staff and are indicated by black dots in Fig. 1a. Data
from these gauges can be obtained from https://psl.noaa.
gov/data/obs/datadisplay/.

3) GAUGE-INFORMED PRODUCTS (MRMS)

MRMS products are produced at NCEP and combine pre-
cipitation estimates from the HADS gauge network, U.S. and
Canadian operational radar networks, and the Precipitation-
elevation Regression on Independent Slopes Model (PRISM)
climatology (Daly et al. 1994, 2017) to produce hourly QPE
over the continental United States (CONUS) on a 1-km grid
(Zhang et al. 2011, 2014, 2016). Four MRMS products are
available: Radar Only, Gauge Only, Gauge-Adjusted Radar,
and Mountain Mapper. We focus here on the evaluation of
the products that include multiple types of precipitation infor-
mation: Gauge-Adjusted Radar and Mountain Mapper, which
have been shown to perform more favorably in the region
than the Radar Only and Gauge Only products (Willie et al.
2017). An updated version of the MRMS product (Version
12) that became operational in October 2020 has yet to be
evaluated with respect to the other QPE products in this

domain. MRMS data are available from https://www.nssl.
noaa.gov/projects/mrms/.

(i) MRMS-Gauge-Adjusted radar
MRMS-GA uses reflectivity from the U.S. WSR-88D net-

work and C-band radars from Environment Canada, identify-
ing different precipitation types that are assigned one of five
different reflectivity-rainfall relationships (Zhang et al. 2016).
As discussed, radar in the western United States is not always
reliable due to beam blockage and inadequate coverage.
Radars in the AQPI domain are shown by orange X marks in
Fig. 1a, with 100-km range rings of radars within and just out-
side the domain also highlighted. A radar quality index (Fig.
1b) is employed in the MRMS-GA algorithm to determine
where the radar observations may not be reliable, and dual-
polarization variables are used to filter out nonprecipitation
echoes. Radar-based precipitation estimates are adjusted
using the HADS gauge network as described in Zhang et al.
(2011).

(ii) MRMS Mountain Mapper
Unlike MRMS-GA, MRMS-MM does not include radar,

relying solely on HADS rain gauge data, interpolated via
inverse distance weighting to the 1-km grid. MRMS-MM uses
the PRISM climatology (Daly et al. 1994, 2017) which
employs an elevation model to calculate the linear relation-
ship between precipitation and elevation at monthly and
annual scales. These relationships are used to adjust the inter-
polated gauge-based precipitation estimates for orographic
enhancement to produce the MRMS-MM product.

4) MULTISENSOR ANALYSES

The National Weather Service established a program to
create a “Reanalysis of Record” in 2004, which is intended to
provide analyses at high spatial and temporal resolution over
a 30-yr period. The first phase of this program produces the
RTMA product, a two-dimensional variational (2DVAR)
analysis of 2-m temperature, specific humidity, dewpoint,
and 10-m U and V wind components with the 13-km Rapid
Update Cycle (RUC) model (or the 13-km Rapid Refresh
(RAP) model after 2012) serving as a first guess (De Pondeca
et al. 2011). RTMA precipitation estimates are the “early”
version of the NCEP Stage II multisensor precipitation analy-
sis bilinearly interpolated to a 2.5-km grid. This analysis is
comprised of data from 150 operational WSR-88D radars and
gauge data from approximately 1500 Automated Surface
Observing System (ASOS) stations and is produced at 35 min
past the hour. As not all radar and gauge data are available
with such low latency, the analysis is reproduced later with
additional data, resulting in the URMA product.

b. High-Resolution Rapid Refresh model

The HRRR model is a convection-allowing model produc-
ing hourly forecasts over the continental United States
(CONUS) at 3-km grid spacing with hourly updates. HRRR
forecasts are produced at 50 vertical pressure levels using
the 13-km RAP mesoscale model for boundary conditions
(Benjamin et al. 2016). The HRRR model has a similar
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configuration to the RAP, which is described in Benjamin
et al. (2016). The HRRR is continuously under development
at the NOAA/ESRL Global Systems Laboratory (GSL),
where an experimental version of the model is run in real
time alongside the operational version and archived for com-
parison. New versions of the model become operational
approximately every two years.

3. Design and methodology

a. Development of probabilistic QPE

As in Bytheway et al. (2020), the gridded QPE datasets
described in section 2 are linearly interpolated to the 3-km
grid spacing of the HRRR model in order to allow for direct
comparison with the QPFs. Gauge data are matched to
HRRR model grid boxes via nearest-neighbor, and when
multiple gauges are present in a 3-km grid box, their average
is taken to represent that location. The results of the Bythe-
way et al. (2020) study showed that each of the ten QPE prod-
ucts had both strengths and weaknesses when estimating
hourly precipitation, but that overall, the uncertainty in
hourly QPE is quite large in the AQPI domain. Here, we
develop a method to evaluate QPFs from the HRRR model
using a probabilistic QPE (pQPE) to classify forecast perfor-
mance into one of four categories.

We begin by developing a cumulative distribution (CDF)
of hourly rainfall in each 3-km grid box from each individual
QPE product for each month (i.e., a CDF for January, one for
February, etc.). Monthly distributions are chosen for several
reasons. First, they are representative of the observed precipi-
tation that occurred in that grid box over the course of the
month—if it is a period of particularly heavy rain, those

values will be captured in the monthly distribution (likewise,
the CDF for a month dominated by relatively light precipita-
tion will not include heavy rain rates). Second, it allows for an
adequate number of precipitating hours to be used in the cre-
ation of the distribution. CDFs on shorter (e.g., weekly or
event based) time scales were also tested, and while they bet-
ter represented individual storm characteristics, they pro-
duced much noisier results and are not as useful during dry
periods or during shorter events. Monthly CDFs also provide
a statistical constraint on the precipitation that is useful in the
event of a timing mismatch between products, or if a gauge
that is used to inform or bias-adjust other products malfunc-
tions and produces a large over or under estimate. The
monthly CDF of rainfall would dampen this signal, reducing
the potential for large outliers.

The CDFs of all QPE products available in the closest
3-km grid box to Santa Rosa, California (STR, Fig. 1a), are
shown in Fig. 2a for January 2017. From these CDFs, the
median, interquartile range (IQR, 25th percentile and 75th
percentile), and 10th and 90th percentile CDFs are deter-
mined for each rain rate, as shown in Fig. 2b. These CDFs are
calculated for each HRRR 3-km grid box and month of the
study period.

Next, a reference QPE for the evaluation is chosen. A ref-
erence is necessary because the CDFs shown in Fig. 2 are cal-
culated monthly, while we are interested in evaluating hourly
precipitation forecasts. Therefore, we need one of the QPE
products to provide an initial guess as to whether is it precipi-
tating at the given location and time, and if so, how much.
This initial guess identifies the quantile of the median
all-QPE CDF that will be used to determine the range of
QPE values that define forecast performance categories. For
this demonstration, we have chosen the MRMS-GA product

FIG. 2. (a) CDF of 10 QPE products for the grid box closest to Santa Rosa, CA (STR in Fig. 1a), for January
2017. (b) Median, 10th, 25th, 75th, and 90th percentile CDFs of the QPE products shown in (a). IQR is shaded lav-
ender, while the area between the 10th and 90th percentiles is shaded gray. Also shown in (b) is the CDF of the
MRMS-GA product for reference.
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for our reference because it produces the best statistical com-
parison with both the HADS and HMT gauges (Table 1). The
agreement between MRMS-GA and HADS is somewhat
expected, since HADS gauges are used in producing the
MRMS-GA product. However, there are known conditions
when the MRMS-GA is unreliable, including areas where
radar may be blocked and HADS gauges are sparse (Bythe-
way et al. 2019), where frozen precipitation may be occurring
(English et al. 2021b) or at high elevations. For example, at
elevations less than 1000 m, the MRMS-GA compares more
favorably to HADS (RMSE 5 0.38 mm, bias 5 10.04, corre-
lation 5 0.85) than at elevations exceeding 2000 m (RMSE 5

0.73 mm, bias 5 20.13, and correlation 5 0.59). A similar
degradation in performance is also found when comparing
MRMS-GA to the HMT gauges at high versus low elevations.
While the MRMS-GA is used to provide an initial guess at
the hourly precipitation at a given location, this methodology
incorporates the CDF of all available QPE products to pro-
vide a range of probable hourly precipitation amounts. This is
particularly useful in situations such as the one shown in
Fig. 2b: the MRMS-GA product produces among the lowest
frequency of occurrence of hourly accumulations less than
5.0 mm, while the median of all QPE products indicates
these accumulations occur up to 5% more often. STR is
located in the Russian River valley, in an area where
the lowest elevation scans of the Sacramento, California
(KDAX), radar are blocked (Fig. 1). Bytheway et al. (2019)
showed that this results in the radar frequently not observ-
ing shallow precipitating clouds, producing underestimates
by MRMS-GA. By incorporating the information from all
of the available QPE into the forecast validation, we can
account for such situations when the chosen reference may
be less reliable.

b. Forecast evaluation with pQPE

Once the reference QPE product is chosen, the forecast eval-
uation continues as follows and is schematized in Fig. 3, which
shows the precipitation quantiles from Fig. 2b. As an example,
we demonstrate a case where MRMS-GA indicates an hourly
accumulation of 5.0 mm at STR for the hour being evaluated.

Starting with the MRMS-GA reference precipitation
estimate for the hour and location of interest (5.0 mm), the

percentile of the monthly median CDF corresponding to
the MRMS-GA-estimated hourly rainfall is determined.
Following the black dashed arrow in Fig. 3, an MRMS-
GA hourly rainfall of 5.0 mm corresponds to the ∼96th percen-
tile of the monthly median all-QPE CDF. The IQR of the all-
QPE CDFs (lavender shading between dashed blue lines) at the
96th percentile corresponds to hourly rain accumulations between
∼3.9 and 5.8 mm (dashed green arrows). If the QPF falls within
this range of hourly accumulations, it is deemed a “good” fore-
cast that falls within the uncertainty of the QPE (illustrated on
Fig. 3 by a green star). The 10th and 90th percentile all-QPE
CDFs (grayshading between dotted blue lines) at the 96th per-
centile correspond to hourly rain accumulations between ∼3.5
and ∼6.8 mm (solid yellow arrows). These values determine the
range of “possible” rainfall for that hour and location. A QPF
outside the range considered to be a “good” forecast, but within
the range indicated by the 10th and 90th percentile accumulation
values, is considered to be a “possible” forecast (illustrated by a
yellow star on Fig. 3), i.e., the predicted rainfall is not outside of
the realm of possibility given the available QPE, but is closer to
the tails of the distribution. QPFs below the “possible” range are
deemed underestimates (illustrated by a blue star on Fig. 3),
while QPFs above the “possible” range are considered overesti-
mates (illustrated on Fig. 3 by a red star). The “stoplight” color
scheme (green, yellow, red, and blue) will be used to denote
“good,” “possible,” “overestimated,” and “underestimated” fore-
casts, respectively, for the remainder of this manuscript.

c. Atmospheric river cases

HRRRQPFs for seven atmospheric river events that impacted
the AQPI domain during the 2016–17 wet season (October–-
March) are evaluated. The HRRR Version 2 (HRRRv2) was
the operational version during this period, while HRRR Version
3 was also being produced in experimental mode (HRRRx). The
cases selected for comparison here use a version of the
HRRRx that was still under development and therefore
may have included slightly different configurations for each
case. Since the goal of this manuscript is to demonstrate the
utility of the developed methodology, sensitivity of the
results to these configuration changes are not examined.
Cases were selected in order to compare the performance of
the HRRRv2 with the HRRRx. Over the duration of each
case, we compare QPFs from forecasts initialized every 3, 6,
and 12 h starting at 0000 UTC (e.g., an event lasting 24 h
consists of eight consecutive 3-h forecasts, four consecutive
6-h forecasts, and two consecutive 12-h forecasts). In this
way we can examine both forecast performance and the
changes between model versions at different lead times.
Case selection was somewhat limited because HRRRx was
not produced at every possible initialization hour, and miss-
ing data due to data feed issues or system maintenance are
not backfilled. Therefore, some hours of the atmospheric
river events are not included in the analysis (i.e., the evalua-
tion begins several hours after (before) the onset (cessation)
of the precipitation). Table 2 lists the cases considered.

To demonstrate the various ways the pQPE evaluation meth-
odology can be used to communicate QPF performance to both

TABLE 1. Statistical comparison between QPE products and
HADS (HMT-West) gauges for all of 2017. Smallest RMSE and
bias values and highest correlation coefficient are highlighted in
bold.

RMSE (mm) Bias Correlation

CMORPH 0.99 (1.04) 20.13 (20.12) 0.35 (0.43)
IMERG 0.73 (0.77) 20.20 (20.19) 0.48 (0.55)
GSMaP 1.11 (1.13) 20.21 (10.19) 0.39 (0.47)
PERSIANN-CCS 0.91 (0.96) 2034 (20.48) 0.20 (0.21)
MRMS-GA 0.47 (0.51) 20.01 (20.06) 0.80 (0.81)
MRMS-MM 0.60 (0.54) 10.02 (20.01) 0.70 (0.79)
RTMA 0.62 (0.58) 20.46 (20.47) 0.54 (0.73)
URMA 0.40 (0.87) 20.14 (20.57) 0.86 (0.49)
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forecast users and model developers, we first present the results
of an evaluation of both versions of the HRRR for a single atmo-
spheric river event that occurred from 1200 UTC 18 February to
1000 UTC 21 February 2017. Aggregate results from all cases
will also be discussed. Finally, we examine the effects of remov-
ing frozen precipitation from consideration.

4. Results

a. Overall evaluation

Figure 4 shows the event total precipitation from both
HRRRv2 and HRRRx for 1–3-, 1–6-, and 1–12-h forecasts

(i.e., a new forecast initialized every 3, 6, or 12 h), as well as
the relative difference between the two. In the 3-h forecasts,
the difference between versions of the HRRR are relatively
small. South of the Bay Area, HRRRx predicts less precipita-
tion over the course of this event at all forecast lengths. Both
versions of the HRRR produce more precipitation in the lon-
ger lead forecasts, with HRRRx displaying a larger increase
in domain mean rainfall at longer forecast lengths. In several
locations, HRRRx 12-h forecasts increase event total precipi-
tation by over 150% compared to HRRRv2. Many of these
large changes appear to be related to either increases in very
small amounts of rainfall, as in the northernmost part of the
domain, or small shifts in the location of bands of higher accu-
mulations, such as the east–west band of enhanced precipita-
tion near the San Francisco Bay. While the HRRRx does
increase the amount of precipitation in this feature over
HRRRv2, it also shifts it slightly to the south to an area where
HRRRv2 produced little accumulation.

Figure 5 shows forecast hourly precipitation from both ver-
sions of the HRRR, observed hourly precipitation from the
MRMS-GA and the QPE uncertainty bounds at Blue Canyon
(BLU, Fig. 1a) for the 18–21 February 2017 event. To avoid
overpenalizing the model for small location or timing errors in
either the edges or start/end of precipitation, when the refer-
ence QPE indicates zero precipitation any forecast precipitation

FIG. 3. As in Fig. 2b, illustrating how the model evaluation methodology is performed. Dashed
green and solid yellow arrows show the range of hourly precipitation defined as “good” (between
the 25th and 75th percentiles) and “possible” (between the 10th and 90th percentiles),
respectively.

TABLE 2. List of cases evaluated in this study. Results are
shown from the 18–21 Feb case in Figs. 4–8, while aggregate
results from all cases are shown in Figs. 9–11.

Begin date End date Duration (h)

0000 UTC 23 Dec 2016 0000 UTC 25 Dec 2016 48
1700 UTC 8 Jan 2017 0300 UTC 11 Jan 2017 60
0100 UTC 12 Jan 2017 0700 UTC 13 Jan 2017 30
0000 UTC 3 Feb 2017 0000 UTC 11 Feb 2017 192
1200 UTC 18 Feb 2017 1000 UTC 21 Feb 2017 70
0000 UTC 27 Feb 2017 0000 UTC 28 Feb 2017 24
0000 UTC 21 Mar 2017 0000 UTC 23 Mar 2017 48
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less than 0.5 mm is considered a “good” forecast, and any fore-
cast precipitation less than 1 mm h21 is considered “possible.”

At BLU, this event can be characterized by two periods of
precipitation: from 1200 UTC 18 February to 0400 UTC 19
February, and from 2200 UTC 19 February to 1000 UTC 21
February. Early in the event (∼1400 UTC 18 February), the
HRRRv2 6- and 12-h forecasts begin producing moderate pre-
cipitation too early, resulting in overestimates, while the
HRRRx forecasts are in better agreement within the uncertainty
of the QPE at this location (Fig. 5 center and bottom). Both ver-
sions of the HRRR reduce the hourly precipitation by 0100
UTC 19 February, ending the first period of precipitation several

hours too early. During a lull in the second period of precipita-
tion at around 0400 UTC 20 February, the 6- and 12-h forecasts
from the HRRRx predict an increase in precipitation several
hours prior to it being observed by MRMS-GA. Evidence of
this timing error affecting a large part of the domain is apparent
in Fig. 6b.

Figure 6a shows the fraction of grid boxes in the domain in
each performance category for the HRRRv2. As precipitation
intensity increases during the second period of precipitation
(∼0600 UTC 19 February), the fraction of pixels classified
as “good” forecasts decreases sharply, from approximately
80% to nearly 40%, while “possible,” “overpredicted,” and

FIG. 4. Event total rainfall from (a),(b),(c) HRRRv2; (d),(e),(f) HRRRx; and (g),(h),(i) relative difference between the two for the atmo-
spheric river event lasting from 1200 UTC 18 Feb to 1000 UTC 21 Feb 2017. Event totals and percent change are calculated using forecasts
initialized (left) every 3 h; (center) every 6 h; and (right) every 12 h. Domain mean total rainfall values are shown in (a)–(f) for reference.
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“underpredicted” precipitation forecasts each account for
approximately 20% of grid boxes in the domain during this
period. Figure 6b shows the difference between the HRRRx
and HRRRv2, and the aforementioned timing error appears
as a large decrease in the amount of grid boxes with hourly
QPE characterized as “good” (green lines), with a corre-
sponding large increase in the fraction of grid boxes charac-
terized as “overestimates” (red lines) several hours before the
corresponding reduction in performance seen in the HRRRv2
in Fig. 6a.

Figure 6a also shows a reduced fraction of good forecasts
with a corresponding rise in overestimates in the first several
hours of the event for HRRRv2. During the same period in
Fig. 6b, the HRRRx tends to reduce the number of overesti-
mates at all forecast lead times, leading to an increase in the
fraction of grid boxes where the forecast precipitation is cate-
gorized as “good.” After 1000 UTC 20 February, there is a
tendency for the HRRRx to produce a larger number of
underestimates than the HRRRv2. With the exception of the
apparent timing error, the difference between the two model
versions in the fraction of grid boxes in each performance cat-
egory is less than 10% for this event.

The Blue Canyon site is one of a few HRRR grid boxes
that have both a HADS and HMT gauge; however, many grid
boxes contain no gauges. Figure 7 shows the same results as
Fig. 5 with the gauges removed from the QPE uncertainty cal-
culations. In some cases, lack of gauge information reduces
the range of the IQR, for example between 1800 UTC 18 Feb-
ruary and 0000 UTC 19 February, there are hours where the

3-h HRRRx and 12-h HRRRv2 forecasts are categorized as
“good” forecasts in Fig. 5 (top and bottom, respectively), but
without the gauge information, the range of both the IQR
and the 10th and 90th percentiles decreases, so that these two
forecasts are now only rated “possible.” A similar reduction
in the range of values that constitutes a “good” forecast
occurs a few hours before 0000 UTC 20 February. Conversely,
at 1200 UTC 20 February, lack of gauge information
increased the range of the 10th and 90th percentiles, such that
heavy precipitation predicted by the HRRRx went from being
categorized as an overestimate to being categorized as
“possible.”

Figure 8 shows the fraction of time during the event that
the HRRRv2 3-h forecast fell into each performance category
as well as the difference between the experimental and opera-
tional versions. The HRRRv2 predicts more precipitation
than the range of QPE in the high terrain of the Sierra
Nevada up to 50% of the time (Fig. 8f) and is very rarely cate-
gorized as an underestimate in this area (Fig. 8e). On the
other hand, the HRRRv2 QPF underestimates compared to
all available QPE 20%–30% of the time over most of the rest
of the domain. This low bias is consistent with other studies
evaluating the HRRR and other WRF-based models (Darby
et al. 2019; Dougherty et al. 2021; English et al. 2021b). The
HRRRx increases the number of hours of “good” forecasts in
the Sierra Nevada (Fig. 8c), with a corresponding reduction of
overestimates in this region (Fig. 8h). However, Fig. 8g also
shows that HRRRx increases the number of underestimates
to the west of the Sierra Nevada.
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FIG. 5. Time series of hourly rainfall at Blue Canyon (BLU) for the MRMS-GA and (top) 3-, (middle) 6-, and (bot-
tom) 12-h forecast periods from both HRRRv2 and HRRRx for the 18–21 Feb atmospheric river event. Lavender
shading indicates the range of “good” QPF values, while gray shading indicates the range of “possible” QPF values.
Dashed vertical lines indicate 0000 UTC each day for reference.

B Y THEWAY E T A L . 53JANUARY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/22 01:44 PM UTC



Next, we will demonstrate the evaluation methodology
over longer-term aggregate statistics to track both the perfor-
mance of an individual model version, and the differences
between two versions of the model. The evaluation methodol-
ogy was applied to seven AR events over the 2016–17 wet sea-
son with a total duration of 472 h.

The results from the 18–21 February case suggest that the
HRRRx increases the number of underestimates in both
the Central Valley and the western coastal mountains, while
reducing the frequency of overestimation and increasing the
number of good forecasts in the high elevations of the Sierra
Nevada (although this result may be influenced by the pres-
ence of frozen precipitation). This pattern holds true for all of
the events examined in this study in aggregate, as shown in
Fig. 9 for the 3- and 12-h forecasts. The signal of reduced
overestimates at high elevation is much more pronounced in
the shorter forecast period, suggesting that data assimilation
changes might be influencing the orographic precipitation
(Bytheway et al. 2017). In fact, the longer forecast period
shows a propensity for increasing overestimates at nearly all
elevations.

Improvements at high-elevation are also seen in Fig. 10,
which displays the difference between the HRRRx and
HRRRv2 at the three forecast lengths binned by elevation.
While the overall changes are relatively small (,5%), at

elevations below 1000 m, there is a reduction in good fore-
casts at all forecast lengths, with a larger reduction for longer
forecast periods. This mostly translates to an increase in over-
estimates in 6- and 12-h forecasts, while 3-h forecasts are
dominated by an increased frequency of underestimation. At
elevations greater than 1750 m, there is a very strong signal of
the reduction of overestimates and increase in forecasts that
are considered “good” for 3- and 6-h forecasts, while there is
a slight increase in overestimates for 12-h forecasts at eleva-
tions up to 3000 m, similar to that seen in Fig. 9.

Figure 11 shows how grid boxes are categorized in
HRRRx based on how they were categorized when evaluat-
ing the HRRRv2. At all forecast lengths, grid boxes catego-
rized as “good” in HRRRv2 remain “good” nearly 95% of
the time in the HRRRx (Fig. 11a). Additionally, grid boxes
that were categorized as underestimates in HRRRv2 fore-
casts typically remain underestimates in HRRRx, with
about 15% showing improvement (i.e., underestimates
from HRRRv2 becoming “good” or “possible” forecasts) in
the HRRRx (Fig. 11c). As suggested by the results shown
in Figs. 9 and 10, the majority of the improvements made
by the HRRRx were a result of reducing high biases. Grid
boxes considered overestimates in the HRRRv2 were cate-
gorized as “possible” or “good” forecasts in the HRRRx
nearly 60% of the time (Fig. 11d).
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b. Effects of frozen precipitation
As noted above, frozen precipitation poses an additional

challenge to accurate estimation of precipitation—many of
the gauges in the HADS dataset do not measure frozen pre-
cipitation, and satellite-based QPE retrievals are known to

struggle to both identify and quantify frozen precipitation.
Additionally, previous studies have indicated that QPE data-
sets tend to exhibit a low bias at high elevations based on
comparisons to snow datasets and that QPF may in fact out-
perform QPE under these conditions (Lundquist et al. 2019;

FIG. 8. (a),(b),(e),(f) Fraction of hours in the 18–21 Feb event that each HRRRv2 grid box is classified into each performance category
for 3-h forecasts. (b),(c),(g),(h) Difference between HRRRx and HRRRv2 for the same event and forecast period. For HRRRv2, the top
row of color bar values corresponds to “Good” forecasts in (a), while the lower row of values corresponds to (b), (e), and (f): “Possible,”
“Underestimates,” and “Overestimates,” respectively.
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FIG. 7. As in Fig. 5, but with gauge datasets omitted from the QPE uncertainty calculations.
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English et al. 2021b). As such, our assumption that “true” pre-
cipitation lies within the uncertainty of the various QPE is
likely invalid under these conditions. To assess the impact of
frozen precipitation on the evaluation, we repeated the

assessment, using the HRRRv2 forecasts to eliminate hours
and grid boxes when 2-m temperature fell below 273 K. We
use only temperature forecasts from the HRRRv2 to ensure
consistent temperatures are assigned to all datasets, and

FIG. 9. As in Figs. 8c,d,g,h, aggregated over all seven AR events considered in this study for (a),(b),(e),(f) forecast hours 1–3 and
(c),(d),(g),(h) forecast hours 1–12.

FIG. 10. Change in fraction of grid boxes falling into each evaluation category between HRRRx and HRRRv2 at
each forecast length based on grid box elevation for all seven AR events included in this study. Dashed vertical gray
lines indicate 500-m increments of elevation.
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avoid removing grid boxes where HRRRv2 and HRRRx
may disagree on predicted temperature. Figure 12 shows
the number of hours evaluated from 3-h forecasts over the
course of the seven AR events (total duration 5 472 h)
when omitting instances of HRRRv2 predicted T , 273 K.
Results were similar for the 6- and 12-h forecasts (not
shown). Using the 273 K threshold, we are able to evaluate
at least partial events over most of the domain, with the
exception of the very highest elevations in the Sierra
Nevada.

Excluding frozen precipitation from the 18–21 February
case eliminates the highest terrain of the Sierra Nevada from
evaluation, which can be seen in an area of gray on Fig. 13. In
the Central Valley and most of the southern part of the
domain, the results when excluding possible frozen precipita-
tion remain unchanged, as do the fraction of hours in the
event considered underestimates (Figs. 8e and 13e). There is
some increase in the number of forecasts classified as possible
surrounding the area that has been masked out. The largest
change to the results from this event is a reduction in the frac-
tion of forecasts falling into the “good” category on the wind-
ward side of the Sierra Nevada and the highest elevations of
the Coast Range in the northern part of the domain (Figs. 8a
and 13a). These changes correspond to an increase in overes-
timates in these areas (Figs. 8f and 13f). This is at least partly
due to the smaller absolute numbers of hours considered, but
also suggests that the 273-K temperature threshold may

not capture all of the frozen precipitation in these areas.
The improvement of HRRRx over HRRRv2 in these areas
is slightly larger when frozen precipitation is removed
(Figs. 13c,h).

FIG. 11. HRRRx forecast performance categories as a function of HRRRv2 performance for grid boxes in
HRRRv2 that were categorized as (a) “Good,” (b) “Possible,” (c) “Underestimates,” and (d) “Overestimates” for all
seven AR events included in this study. Blue bars indicate forecasts initialized every 3 h, orange bars show forecasts
initialized every 6 h, and green bars represent forecasts initialized every 12 h.

FIG. 12. Number of hours evaluated (out of a possible 472) when
omitting forecast hours when HRRRv2 2-m temperature is below
273 K.
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The results are similar when considering all seven AR
events collectively. Figure 14 shows the same as Fig. 9 with
frozen precipitation removed. For forecasts initialized every
3 h, there is a decrease in the fraction of improved forecasts
on the windward side of the Sierra Nevada south of Lake
Tahoe with corresponding increase in overestimates. How-
ever, there is also a large area in the highest terrain of the
Sierra Nevada where the fraction of overestimates is reduced

and the fraction of “good” forecasts is increased (Figs. 14a,f).
Forecasts initialized every 12 h show similar patterns on the
windward slopes south of Lake Tahoe; however, the corre-
sponding improvement at the highest elevations is not present
(Figs. 14c,h). This effect is well illustrated by Fig. 15, which
repeats Fig. 10 with frozen precipitation removed. In Fig. 10
the HRRRx showed a sharp increase in the fraction of
“good” forecasts with a corresponding decrease in

FIG. 13. As in Fig. 8, but for hours when HRRRv2 2-m temperature is greater than 273 K.

FIG. 14. As in Fig. 9, but for hours when HRRRv2 2-m temperature is greater than 273 K.
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overestimated forecasts for elevations greater than 1500 m
and forecasts initialized every 3 and 6 h. When considering
only liquid precipitation, the increase in “good” forecasts is lim-
ited only to forecasts initialized every 3 h, and does not continue
to increase at elevations greater than 2000 m. Similarly, the
reduction in overestimates is limited to forecasts initialized
every 3 h, and the pattern is strongly reversed for 12-h forecasts
(i.e., overestimates increase and “good” forecasts decrease at
elevations above 2000 m). As indicated by Fig. 12, no compari-
sons are performed at elevations greater than 3200 m, and
results above 3000 m are not shown in Fig. 15 due to the very
small number of available comparison points.

5. Discussion

a. Reference product selection

The pQPE methodology uses monthly CDFs of observed
hourly precipitation in each grid box from each QPE product to
describe the uncertainty of QPE estimates. The monthly time
period was selected to balance the need for an adequate num-
ber of precipitating hours to produce the distributions and
dampen the signal of any glaring outliers in the hourly estimates
with the need to accurately represent the characteristics of the
precipitation that fell, including extreme values. The evaluation
methodology relies on the quantile of the median CDF for a
given rain rate determined by a selected reference QPE prod-
uct. For simplicity and demonstration purposes, we selected the
MRMS-GA as our reference due to its performance when

compared to gauges in the domain. The selection of a different
reference product would produce somewhat different results,
and a comparison of HRRR performance as a function of
selected reference QPE could provide a demonstration of
where the disagreement between QPE products is greatest.
Indeed, it is likely that the “best” reference QPE product varies
by location, season, or storm characteristics.

Selecting the QPE product with the CDF that most closely
matches the monthly median CDF at each grid box would
approximate a direct comparison with the median CDF and
potentially provide a better initial guess of hourly precipita-
tion. However, it would also add the complexity of using a
location-dependent reference. Figure 16 shows which prod-
ucts’ CDFs have the smallest RMSE compared to the monthly
median in each 3-km grid box for January and February of
2017. While the MRMS-GA product compared most favor-
ably to gauges based on several validation statistics, the
IMERG monthly CDF most closely matches the all-QPE
median CDF over a large portion of the domain in both
months. Many areas are unchanged between the two months,
but many areas would use a different reference QPE in Janu-
ary than in February. For example, in January, the RTMA
CDF most closely matches the median in regions to the east
and north of the San Francisco Bay, while in February these
same areas are most closely represented by the URMA,
MRMS-GA, and IMERG. An examination seeking common
characteristics of areas where a given QPE product best
matches the CDF median (e.g., terrain, gauge density, or pre-
cipitation characteristics) could provide insight into when and

FIG. 15. As in Fig. 10, but for hours when HRRRv2 2-m temperature is greater than 273 K.
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where an individual QPE might be considered more or less
reliable, but is outside the scope of the current study.

b. Testing the pQPE methodology through comparison
to gauges

The pQPE methodology relies on the assumption that the
“true” rainfall lies somewhere within the range of the individ-
ual QPE estimates. The individual QPE products available in
the AQPI domain each have their own strengths and weak-
nesses which contribute to the large QPE uncertainty in the
region. The sometimes-large spread of QPE at a given location
and time increases the likelihood that the true rainfall is found
within the range of the estimates. In spite of this, it is a worth-
while exercise to examine how well the two gauge-only QPE
products relate to the range of “good” and “possible” precipi-
tation estimates provided by the pQPE methodology, since
surface rain gauges are typically considered to be the most reli-
able estimate of the true rainfall. This test is of course limited
only to grid boxes that have a gauge available, and also comes
with the caveat that the gauge is a point measurement, which
may not represent the areal average rainfall in the grid box,
particularly in the complex terrain.

Over the course of the 7 AR events, there are a total of
92 976 valid HADS observations, and 20 955 HMT observa-
tions. Of these observations 13.2% (7.2%) of the HADS pre-
cipitation estimates were outside the IQR (10th/90th
percentiles). The HMT gauges compared slightly worse, with
21% (13.1%) of these estimates outside of the IQR (10th/90th
percentile). Of the HADS observations that were outside the
IQR, 17.4% occurred during periods when the forecast tem-
perature was less than 273 K (9.2% for the HMT). Figure 17

shows the fraction of hours during the seven AR events that
individual gauges were outside the IQR and 10th/90th percen-
tiles. The majority of the gauges outside the IQR for both net-
works are located in the complex terrain along the coastal
mountains and Sierra Nevada, and these maps imply that a
relatively small number of individual gauges are contributing
a large fraction of the hours that these products disagree with
the range of “good” and “possible” hourly rainfall values. For
example, five gauges in the HMT network are outside the
IQR 35% of the time, corresponding to 18% of the observa-
tions falling outside the IQR of the QPE products. All of the
gauges showing the largest fraction of hours outside the IQR
show a reduced fraction of hours outside the 10th/90th per-
centiles. Again, the most frequent disagreements are mainly
located in the terrain, and are most often the result of the
gauges indicating more precipitation than the remainder of
the QPE products. If the gauges are believed, it is possible
that many of the HRRRv2 forecasts classified as overesti-
mates in the complex terrain are more reliable than indicated
by this methodology. However, there are several possible rea-
sons for the disagreement between gauges and the pQPE,
including gauge overestimates due to a buildup of snow that
melts rapidly, the possibility of frozen precipitation effecting the
gridded QPE, gauges, or both, or, in areas where the gauges are
too low, gauge undercatch due to wind,. Alternatively, the
gridded products could all systematically over or underestimate
precipitation for reasons noted in the introduction.

c. Sample size limitations

Due to the relatively infrequent nature of atmospheric
river events and incomplete HRRRx archive, this study

FIG. 16. QPE product with monthly CDF closest to the monthly median CDF (based on RMSE) for January and February 2017.
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consisted of only a small number of cases, and we emphasize
that the comparisons shown herein are meant only to dem-
onstrate the pQPE methodology. A much larger data sam-
ple would be required to make robust generalizations about
performance differences between the versions of the
HRRR. Additionally, HRRRx was under development dur-
ing the period of study, and therefore it is possible that
there were small differences in the model configuration dur-
ing the different AR events. For the purpose of the AQPI
project, forecast model experiments are typically run on a
similarly small number of cases, and this QPF evaluation
methodology can quickly show the changes in forecast pre-
cipitation that result from experimental changes to the
model. Results from individual cases can be useful to exam-
ine how changes to the model influence forecast perfor-
mance as a function of storm characteristics, such as the
angle of incidence of the winds to the terrain.

5. Summary and conclusions

In this paper, we present a methodology to make use of all
available high resolution (hourly, ,10 km) QPE information in
the AQPI domain in order to evaluate high resolution forecast
model performance. The use of a large number of QPE prod-
ucts represents an attempt to account for the large uncertainty
in high resolution QPE in the region. Considering the estimates
from all available high resolution QPE products reduces the
chance of penalizing the model performance metrics when a
given reference QPE is unreliable, for example when radar
beams are blocked or gauges are clogged, without requiring
prior knowledge of the potential issue in the observed data. It is
worth noting that there may be some situations where all avail-
able QPE are unreliable, for example frozen precipitation over
snow cover in a region of radar beam blockage.

The results of the demonstration given here show the appli-
cability of the pQPE evaluation methodology to assess model

FIG. 17. Fraction of hours when (top) HADS and (bottom) HMT gauge observations lie outside the (a),(c) IQR and
(b),(d) 10th and 90th percentiles of the all-QPE CDFs for all hours of the seven atmospheric river events.
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performance of individual forecast periods, precipitation
events, or to evaluate changes between versions of the same
model over extended periods of time. The example compari-
son between HRRRv2 and HRRRx suggests that the HRRRx
reduces the tendency of the HRRRv2 to overpredict precipita-
tion in the high terrain of the Sierra Nevada, particularly at
short forecast lengths. However, because some studies have
shown that QPE datasets tend to be biased low at high eleva-
tions based on comparisons to snow datasets (Lundquist et al.
2019; English et al. 2021b), we repeated the evaluation while
omitting frozen precipitation based on 2-m temperature from
the HRRRv2. This eliminated grid boxes above ∼3200-m
elevation from consideration, and reduced the number of
hours evaluated in the Sierra Nevada and the highest eleva-
tions of the Coastal Range, therefore reducing the apparent
improvements made in these regions by the HRRRx. While
many of the gauges included in the QPE products used in
this evaluation do not measure frozen precipitation, many
of them are collocated with snow measurements, which
could be included as another source of QPE.

The development of a method to account for the large QPE
uncertainty when validating high resolution QPF should not
serve as a substitute for continued work to improve high resolu-
tion QPE, especially in complex terrain such as in the AQPI
domain where frozen precipitation remains a challenge, even for
the described pQPE methodology. Continued work to add
instrumentation, improve observations of frozen precipitation,
merge different observations into multisensor QPE products,
and to understand the physical characteristics of storms that may
lead to higher or lower uncertainty in precipitation estimates will
be crucial to our ability to evaluate future forecast models and
monitor and manage water resources in complex terrain regions.
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